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J. Phys. A: Math. Gen. 19 (1986) 2317-2323. Printed in Great Britain 

Potential V ( r )  = pr2 + vr4 and mutual equivalence of the two 
recent algebraic approaches to Schrodinger equations 

M Znojil and M Tater 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei, Czecho- 
slovakia 

Received 6 August 1985 

Abstract. We consider the anharmonic oscillator Hamiltonian and solve the corresponding 
Schrodinger equation by means of the recently proposed fixed-point (FP) perturbation 
theory. The FP formalism resembles an introduction of the creation and annihilation 
operators, uses a vectorial generalisation of continued fractions, introduces the inverse 
model-space dimension as a natural and controllably small expansion parameter and is 
shown to define a ‘smooth’ (exact, effective) truncation of the Hamiltonian matrix. It also 
reproduces the recent n >> 1 asymptotic formulae for the wavefunctions. 

1. Introduction 

Anharmonic corrections are rarely easily tractable as a small perturbation. The tradi- 
tional Rayleigh-Schrodinger perturbation series diverges (Simon 1969) and its 
resummations are complicated (cf, e.g., references listed in Marziani 1984). At the 
same time, a numerical diagonalisation of the corresponding Hamiltonian matrix 

a, = 6 vn2 + (9 Y + 6’d+ 2 p  + 2) n + O( 1) 

b, = (414 + 2 d +  5 v + p - l )Pn  Cn = V P n P n c l  

n, 1 =o, 1,.  . , Pn = ( n  + 1)”2( n + 1 + $ ) 1 ’ 2  

converges quickly (Graffi and Grecchi 1975). This leads to the following rather 
surprising conclusion. In practice, a ‘small’ parameter measuring the anharmonicity 
might be identified with the inverse cut-off dimension in (1.1) rather than with the 
coupling v itself. 

The above (rather vague) feeling finds further support in an asymptotically smooth 
matrix structure of H. Thus, we may try to replace (1.1) by an exact, finite-dimensional 
effective Hamiltonian He* by purely algebraic non-perturbative means. This has been 
suggested in our earlier paper (Znojil 1983, hereafter referred to as I) .  
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Paper I starts from the numerical factorisation of the truncated Schrodinger equation 
~ ( ” q ,  = E ( N ’ $  

9 

where the superscript T denotes the transposition and 

Algebraically, it is defined by the recurrences 

fn=(an-E-g2,f+, -C2,fn+2)- ’  

gn = b n  - C n g n + l f n + 2  n = 0,1, . . . 
(1.4) 

with the initial values 

N >> 1. (1.5) 

Variationally, we are interested in the N + 00 limit. Perturbatively, we shall analyse 
this limiting transition. 

In fact, the main practical merit of factorisation (1.2) lies in the possibility of 
rewriting the truncated secular equation det(H“’- E )  = 0 by means of the simple 
algebraic identity 

( N )  - ( N ) -  ( N )  - 
g N - I  - f N  - f N + l - O  

N 

det(H”’- E )  = n l/fl”). 
k = O  

Indeed, unless the value of E coincides randomly with a zero of a submatrix of H ( N ) ,  
we may use the condition 

1/ fp = 0 N+CO (1.7) 

as a secular equation determining all the binding energies in principle. 
In analogy with the analytic continued fractions (Wall 1948) and their matrix 

generalisations (e.g. Graffi and Grecchi 1975), the auxiliary triplets (g‘,“”, fi??, f;?;) 
will be called here the vectorial continued fractions (VCF) in the limit N + CO. In paper 
I, their so-called fixed-point ( FP) algebraic approximation concept has been developed, 
also in analogy with the analytic continued fractional analysis (Znojil 1984 and 
references therein). In Q 2 below, a detailed realisation of this general FP perturbative 
methodical proposal will be described in application to (1.1). The whole procedure 
is based on a geometric analysis of the VCF convergence and leads to the introduction 
of a small perturbative parameter in a very natural way. 

In our recent paper (Znojil et al 1985, hereafter referred to as 11), an alternative 
approach to the diagonalisation of H (1.1) was based directly on a difference-equation 
re-interpretation (DER) of the exact Schrodinger equation. Seemingly, there is no 
connection between the assumptions of I and 11. In the present paper, we intend to 
demonstrate a full equivalence between their respective geometric and analytic points 
of view. 
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With regard to the asymptotical wavefunctions (the main DER result of 11), we shall 
see here that the FP perturbative expansions of our auxiliary VCF quantities enable us 
to quickly rederive the DER result. This is done in P 3. In 0 4, a numerical example 
is used to illustrate this and show how the DER formulae and FP expansions of Heff 
accelerate the convergence of energies. 

2. The FP perturbative VCF expansions 

The asymptotic form 

of elements in ( 1 . 1 )  implies that the VCF convergence may easily be proved. Indeed, 
we may denote 

f k  = UN2fN-k G k  = gN-k-IfN-k 

and rewrite recurrences (1.4) in the leading-order approximation 

f k  = ( a  - G k - l / f k - l -  C 2 f k - 2 ) - '  (2.2) 

6 k  = ( b  - C 6 k - l ) I k  a = 6 ,  b = 4 , c = 1 .  

With the initial values ( 1 . 9 ,  these k-independent mappings can be solved exactly, 

- k ( k + l )  
f k  = ( k  + 2)( k + 3 )  

2k  
k + 2  

Gk =- k = 0, I ,  . . . . (2.3) 

Due to the convergence of our VCF quantities, we may write 

G k  @k+i  % (c = 2  k >> 1 (2.4) fk f k + l  % f = 1 

where the values of f and Q follow from the leading-order fixed-point algebraic 
equations of I, 

f + l l f  = 6 - v 2 / f  

Q(1 + f )  =4$ (2.5) 

The solution is completely degenerate and unique, in full analogy with the matrix 
results of Znojil (1984). 

Concerning the next FP approximations, we may notice that the formulae 

(2.6) 
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do not lead to the same asymptotic representation of the VCF components. This would 
contradict, e.g., equation ( 3 . 6 )  of I which implies only a possibility of the weakened 
ansatz 

g N  = v p - 8 + ~ p - 7 + y p - 6 + ~ p - 5 + h p - 4 + .  . . 
f N  = wp8 + up9 + bp l o  + ~p ’’ + dp l 2  + . . . 

with the ‘natural’ variable p = N-1’4> 0.  
When we switch to the scaled anharmonic coupling v = 1 in (1- l ) ,  we may now 

treat p as a small and independent variable in the FP perturbative spirit. We obtain a 
coupled set of non-linear relations for the coefficients in (2.7). 

From the purely technical point of view, a determination of the unknown coefficients 
in (2.7) is rather lengthy. The reason is twofold. First, we have to represent the changes 
of indices in a Taylor-series manner, 

( N + n ~ ) - ” ~ = p - $ m p ’ + .  . . 
p 8 g N + 1 = v +  ...+ zp3+(h+4)p4+.  

etc. The second complication stems from a biquadratic character of the second relation 
in (1.4). Fortunately, when we combine the first item of ( 1 . 4 ) ,  namely the relation 

u + x p + y p 2 +  . . . =  4+pp4+ . . .  
- ( 1  + -yp4 + . . .)( w + up + bp2 + . . .)( u + xp + . . .) 

appropriately with the second one, we obtain the equation 

g N g N  - 2 1  C N -  1 C N - 2  + g N f N b N -  1 /  C N -  1 + f N f N + Z C k  - g N b N - 2 /  C N -  1 C N - 2  -fhrcIN + 1 = 0 
( 2 . 9 )  

which is biquadratic in g and f: 
In the light of (2.4), we have to put 

v = 2  w = l .  (2.10) 

x = - U  y = -b+’a2 2 z = a b - c - ’  4u . . .  ( 2 . 1 1 )  

From ( 2 . 8 ) ,  we obtain 

and, combining this with the definitions of the type 

l / c N - 1 c N - 2 = 1 + ( 6 - 2 y ) p 2 + .  . 

we arrive at the power series form 
m 

D k ( U , b , C ,  . . . ) p k =  0 
k = O  

of the requirement ( 2 . 9 ) .  This is an equation to be satisfied term by term 

D k ( U ,  b, C , .  . . )=o k = 0 , 1 ,  . . . . ( 2 . 1 2 )  

Together with the corresponding definitions, this is an implicit form of our final FP 
perturbative prescription. 
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When we analyse (2.12) in detail, we notice that the validity of (2.10) reduces the 
first four relations with k = 0, 1,  2 and 3 to identities. This reflects the quadruple 
degeneracy of the leading-order solution. From the fifth k = 4 item (2.12), we obtain 
the first non-trivial specification of parameters 

a4 = 16. 

An existence of its four distinct solutions a = *2, a = *2i removes the above degeneracy 
completely. Physically (Znojil 1984), we have to choose 

a = -2 x = 2 .  (2.13) 

Starting from k = 5,  equation (2.12) simply represents a linear definition of the 

b = 2  y = o  (2.14) 

subsequent unknown coefficients in (2.7). For k = 5 ,  we obtain 

etc. The algebraic manipulations are to be performed on the computer. 

3. Wavefunctions 

In the DER methodical context, the asymptotic formulae of the type 

(nI+)= ( -1 )"  e x p [ ~ a ( l * i ) n 3 / 4 + ~ ( J n ) ]  (3 .1)  

may be derived for the wavefunction projections (11). In the present FP framework, 
we are able to rederive them as well. Indeed, when we put 

( n l + ) = ( - l ) " X n  = ( - 1 ) " t ( ~ )  P = p ( n ) = n - ' / 4  (3.2) 

X n - 1 - 2 X n + X n + l + ( X n - ' - X n ) r n - W n X n  = O  (3.3) 

rn = C n - , f n + ,  - 1 

and convert the Schrodinger equation H+ = E+ into its VCF form 

wn = g J n + ,  - 2 - rn n = 0 , 1 , 2 ,  . . .  
we may proceed in full analogy with the DER approach and interpret relations (3.3) 
as a difference equation. It is of second order here, but the coefficients must be 
represented by their FP perturbative expansions. 

Of course, we shall use the variable p ( n )  rather than the index n itself. With the 
notation 

Pi=P(n*t )=(n*1) - i /4=pr~*  

6, = { * 1 )  ll4[ + ( f 1 )  ll4][ 1 /2  + ( * ~ ) ~ / ~ ] } - l  = 6 (3.4) 
a = '  5 

4P 

the n >> 1 asymptotic domain corresponds to the right vicinity of zero in the new variable 
p. Thus, with the standard assumptions, the Taylor series 

5 ( P * )  = t ( P )  r U ' ( P )  + f 6 2 ( p )  F.. . (3.5) 
may be inserted in (3.3). We get the relation 

82tfr+ rn(6['+i62r+ 0(s35'")) + w,5 + o(s4,y) = o (3.6) 
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A posteriori, we may verify that ~3~5'~) = O ( p k )  and control the precision in (3.6) 
as well as in the more precise relations obtained in the same manner. Replacing here 
the coefficients r, and w, by their leading-order FP form, we arrive at the ordinary 
linear differential equation 

~ p * 5 " ( p ) + f a p 4 ( ' ( p ) + 5 a Z Z ( p )  = 0. (3.7) 

Its solution 

where 

A ( p ) = $ a ( l * i ) + O ( p )  (3.9) 

is fully compatible with the DER result (3.1). 
An inclusion of the second-order FP corrections modifies equation (3.7): 

&p8(1 + f a p ) ( " + $ ( u  + f1p)5'+[&2~+(ab -aa3)p](  = 0. (3.10) 

Obviously, this modification is trivial-an overall multiplication by the factor 1 - p 
implies just an improved error factor to be used in (3.1). In the same way, the 
higher-order corrections may also be generated. 

4. A test and conclusions 

With an overall error estimate controlled by our choice of the model-space dimension 
N, our construction of the VCF quantities represents an efficient numerical eigenvalue 
algorithm of course. This may be illustrated on the simplest s-wave ground-state 
energies as displayed in table 1 for the potential V ( r )  = r2+  r4 .  In comparison with 
the variational (truncation) results, an improvement of precision is observable even 
on the very boundary of the asymptotic region. It may be controlled not only by an 
increase of the dimension N, but also via an improved FP definition of the VCF initial 
values. 

In the light of I and 11, we may interpret the present VCF initial values as an 
algebraic definition of the Feshbach effective Hamiltonian Heff as well. In addition 
to the obvious coincidence 

H Z ,  = H,,,, m o r  n<N-1 (4.1) 

Table 1. Ground-state energies in the potential V ( r )  = r 2 +  r4 as calculated from the 
approximate matrices He'. 

Approximation 
Dimension 
N Zero order Second order 

9 4.650 939 4.646 486 
10 4.649 440 4.648 928 
11 4.648 920 4.648 825 
12 4.648 824 4.648 819 
cc 4.648 8127 4.648 8127 
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we may derive the asymptotic formulae of the type 

which generalise the zero-order results obtainable by the various techniques (e.g. Znojil 
1984). Up to the corrections O(p8) ,  such an asymptotic matrix He* remains energy- 
independent and may be still interpreted as a smoothly truncated approximation of 
the exact Hamiltonian which has a finite dimension. It is interesting to compare this 
approximation with the structure of the wavefunctions which cannot be approximated 
by their finite-dimensional sections with sufficient precision. 
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